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Abstract. Randomized Newton methods have recently become the focus of intense research activity in large-
scale and distributed optimization. In general, these methods are based on a “computation-accuracy
trade-off”, which allows the user to gain scalability in exchange for error in the solution. However,
the user does not know how much error is created by the randomized approximation, which can be
detrimental in two ways: On one hand, the user may try to assess the unknown error with theoretical
worst-case error bounds, but this approach is impractical when the bounds involve unknown constants,
and it often leads to excessive computation. On the other hand, the user may select tuning parameters
and stopping criteria in a heuristic manner, but this can lead to unreliable results. Motivated by these
difficulties, we develop a bootstrap method for directly estimating the unknown error, which avoids both
the excessive computation of the worst-case approach and the uncertainty of the heuristic approach.
Also, we provide non-asymptotic theoretical guarantees to show that the error estimates are valid for
several error metrics and algorithms (including giant and newton sketch). Lastly, we show that
the proposed method adds little cost to existing randomized Newton methods, and that it performs
well in a range of experimental conditions.

1 Introduction

In recent years, there has been a surge of interest in using randomized approximations to accelerate Newton
methods in large-scale and distributed optimization (e.g. Shamir et al., 2014; Erdogdu and Montanari, 2015;
Zhang and Lin, 2015; Byrd et al., 2016; Pilanci and Wainwright, 2016; Reddi et al., 2016; Roosta-Khorasani
and Mahoney, 2016; Xu et al., 2016; Pilanci and Wainwright, 2017; Wang et al., 2017, 2018; Dünner et al.,
2018; Gupta et al., 2019; Li et al., 2019, among many others). At a high level, this rapid development of
research has been driven by the fact that computing an inverse Hessian to machine precision can be very
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costly or infeasible in large-scale problems. Instead, randomized approaches make it possible to overcome
this challenge by exchanging some degree of accuracy in return for substantial reductions in both processing
and communication costs. However, one of the common difficulties faced by users in applying randomized
Newton methods is that they do not know how far a randomized Newton step might stray from an exact
one.

To deal with the uncertainty in the quality of a randomized solution, we aim to develop a bootstrap-based
method for estimating the errors of randomized Newton methods. In particular, this approach avoids the
conservativeness of worst-case analysis by directly estimating the actual error of a given randomized solution.
In addition, the bootstrap method provides the user with the flexibility to estimate error in terms of metrics
for which worst-case bounds are unavailable, Next, in comparison to heuristic rules, this approach offers
much more reliability by giving the user a systematic procedure that is supported by theoretical guarantees.
Furthermore, the proposed bootstrap method is highly scalable due to its embarrassingly parallel structure,
and it enjoys excellent numerical performance.

1.1 Background and setting

Consider the problem of minimizing an objective function of the form

fpwq “ 1
n

řn
i“1 ϕpa

J
i w, biq ` rpwq, (1)

where the functions ϕ : R2 Ñ R is convex and twice differentiable, r : Rd Ñ R is twice differentiable, the
vectors aJ1 , . . . , a

J
n P Rd are the rows of a matrix A P Rnˆd, the scalars b1, . . . , bn are the entries of a vector

b P Rn, and n " d. Objective functions of the form (1) are ubiquitous in machine learning, where the points
tpai, biqu

n
i“1 typically play the role of n observations, and f is viewed as a measure of empirical risk. Some

of the most well known examples occur in the fitting of regularized generalized linear models and support
vector machines, where ϕ corresponds to a loss function, and rpwq is a regularization function of the form
rpwq “ γ}w}22 for some parameter γ ą 0 (cf. McCullagh, 2019; Chapelle, 2007). Another important class of
examples arises in solving linear programs of the form mintcJw |Aw ď bu by interior point methods, where
rpwq “ cJw for some cost vector c P Rd, and ϕ corresponds to a logarithmic barrier function. (We refer
to (Pilanci and Wainwright, 2017) for more detailed examples along these lines.)

Classical Netwon method. When a classical version of Newton’s method is applied to minimize (1),
each iterate wk P Rd is computed using both the gradient

gk :“ ∇fpwkq “ 1
n

řn
i“1 B1ϕpa

J
i wk, biqai `∇rpwkq

as well as the Hessian Hk :“ ∇2fpwkq given by

Hk “
1
n

řn
i“1 B

2
1ϕpa

J
i wk, biqaia

J
i `∇2rpwkq, (2)

where B1 is the partial derivative with respect to the first argument of ϕ. More specifically, if ηk is a step
size parameter, then the update rule for the iterates is

wk`1 “ wk ´ ηkH
´1
k gk.

However, in many cases, it is prohibitive to implement this update rule exactly, either because n is very
large, or because the observations tpai, biqu

n
i“1 may be stored in a distributed manner, which can lead to

high communication costs.
In order to overcome these bottlenecks, randomized Newton methods seek to compute efficient approxi-

mations to the inverse H´1
k . In particular, these approximations tend to strongly leverage the fact that the

function (1) has a Hessian that can be theoretically decomposed as

Hk “ CJk Ck `∇2rpwkq, (3)

where Ck P Rnˆd is a matrix given by
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Ck :“ 1?
n
DkA with Dk :“ diagt

a

B21ϕpa
J
i wk, biqu

n
i“1.

Below, we provide a very brief review to two well-known examples of such randomized algorithms called
newton sketch (Pilanci and Wainwright, 2017) and giant (Wang et al., 2018), since they will be the
focus of our work later on.

The newton sketch algorithm. The core idea of the newton sketch algorithm is to randomly
transform the matrix Ck into a much shorter version C̃k P Rtˆd that can be handled more efficiently, where
t ! n. Commonly, the matrix C̃k is referred to as a “sketch” of Ck, and t is known as the “sketch size”.
In detail, the random transformation is implemented with a random “sketching matrix” Sk P Rtˆn so that
C̃k “ SkCk, and in turn, this leads to a sketched Hessian matrix defined as

rHk :“ CJk S
J
k SkCk `∇2rpwkq.

Accordingly, this algorithm revises the classical Newton method by using the following randomized Newton
step instead,

wk`1 “ wk ´ ηkp rHkq
´1gk. (4)

In order to ensure that H̃k provides an effective approximation to Hk, the sketching matrix Sk is typically
generated so that it has i.i.d. rows and satisfies the relation ErSJk Sks “ In. For example, when Sk is a
uniform sampling matrix, the rows of Sk are generated as i.i.d. samples from the uniform distribution on the
set t

?
ne1, . . . ,

?
nenu Ă Rn, where e1, . . . , en are the canonical basis vectors.

The giant algorithm. When data are stored on a distributed system, communication cost between dif-
ferent machines (workers) is often of paramount importance. As a way to avoid the high-communication costs
that arise when computing an exact Newton step in this setting, the giant algorithm uses an approximation
to H´1

k derived from the harmonic mean of local Hessian matrices.
To be more specific, suppose random samples from tpai, biqu

n
i“1 are evenly distributed across m different

workers, and the j-th worker holds data points with indices in set Ij . Then, the j-th local Hessian matrix
at the k-th iteration is defined as

rHk,j :“ 1
|Ij |

ř

iPIj B
2
1ϕpa

J
i wk, biqaia

J
i `∇2rpwkq, (5)

and the Newton update takes the form

wk`1 “ wk ´ ηk
1
m

řm
j“1p

rHk,jq
´1gk

“ wk ´ ηkp rHkq
´1gk, (6)

where rHk :“
`

1
m

řm
j“1p

rHk,jq
´1

˘´1
is the approximate Hessian matrix.

1.2 Problem formulation

In order to study the algorithmic error of randomized Newton methods, our work will focus entirely on the
randomness that comes from within the algorithms, and we will always treat the points tai, biu

n
i“1 and the

function f as being deterministic. From this perspective, it is important to clarify that the iterates wk of
such algorithms are random vectors, but the exact optimal solution

wopt “ argmin
wPRd

fpwq

is deterministic.

Estimating error with respect to Newton step. To measure the quality of the iterate wk, we may
consider the (random) error in Newton step

εk “ ρpr∆k,∆kq, (7)
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where ρp¨, ¨q is a generic measure of error, and we write

∆k :“ H´1
k gk and r∆k :“ p rHkq

´1gk (8)

for the exact and sketched Newton steps. For example, we can take ρpw1, wq to be the absolute error in any
norm } ¨ }˛, i.e. ρpw1, wq “ }w1 ´ w}˛, or the relative error ρpw1, wq “ }w1 ´ w}˛{}w}˛. The error in Newton
step is of particular interest for functions that are locally quadratic near optimal solution, since for quadratic
functions, the exact Newton method will converge in a single step.

Due to the fact that the error εk of Newton step is a random variable, it is of interest to study its
p1´αq-quantile, which is defined as the tighest possible upper bound on εk that holds with probability at
least 1´ α,

qα,k “ inf
!

q P p´8,8q
ˇ

ˇ

ˇ
P
`

εk ď q
˘

ě 1´ α
)

.

Since the quantile qα,k is unknown in practice, we aim to construct an estimate pqα,k, which is intended to
satisfy the bound

εk ď pqα,k (9)

with probability nearly equal to 1´ α.

Estimating error with respect to Newton decrement. Another commonly used error metric is
the optimality gap fpwkq ´ fpwoptq. To derive a bound on the optimality gap, it is convenient to consider
the squared Newton decrement

δ2k :“ gJkH
´1
k gk. (10)

This quantity has special significance when f is a convex function that satisfies the condition of self-
concordance — which commonly arises in the context of interior point methods (cf. Nesterov and Ne-
mirovskii, 1994). In fact, some of the most widely studied instances of the function (1) are known to be
self-concordant, including those arising from ridge regression, regularized logistic, and smoothed hinge loss
functions (cf. Zhang and Lin, 2015).

For a function f that is convex and self-concordant, it is a classical fact that if wk is any point in the
function’s domain, then the optimality gap is bounded according to

fpwkq ´ fpwoptq ď δ2k, (11)

provided that δk ď 0.68 (Nesterov and Nemirovskii, 1994). However, because the exact quantity δ2k is

unknown, it is of interest to measure the error of the approximate squared decrement rδ2k :“ gJk H̃
´1
k gk,

namely
εk “ %prδ2k, δ

2
kq, (12)

where %p¨, ¨q is an error measure of our choice. Also, by analogy with the earlier definition of qα,k, the
p1´αq-quantile of εk is defined as

qα,k “ inftq P p´8,8q|Ppεk ď qq ě 1´ αu.

Furthermore, since this parameter is unknown, we seek to construct an estimate pqα,k such that the following
bound holds with probability nearly equal to 1´ α,

εk ď pqα,k. (13)

In turn, this will provide a high probability bound on the optimality gap. For example, when % is chosen to
be the relative error %prx, xq “ |rx´ x|{|x|, the estimate pqα,k will be expected to satisfy

fpwkq ´ fpwoptq ď δ̃2k p1´ pqα,kq
´1

with probability at least 1´α.

2 Methods

In this section, we describe two methods for constructing estimates pqα,k and pqα,k satisfying the conditions
(9) and (13) respectively.
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2.1 Bootstrap Error Estimation for newton sketch

Since in practice we are not computing the exact Hessian, the actual distribution of εk remains unknown.
However, if we can generate some bootstrap samples of Newton step r∆˚k that fluctuate around r∆k in a similar

way as r∆k fluctuate around ∆k, then the empirical p1´αq-quantile of the error ρpr∆˚k ,
r∆kq should be close

to the quantile for the actual error εk, and similarly the empirical quantile of %prδ˚2k , rδ2kq should be a good

estimator of the true quantile for εk. Here rδ˚2k are the bootstrap samples of squared Newton decrement,

defined as rδ˚2k “ gJk
r∆˚k .

The proposed method is based on the preceding observation. To generate the relevant bootstrap samples,
we generate a matrix S˚k P Rtˆn by sampling t rows uniformly (i.e. with replacement) from Sk. In turn, a

bootstrap sample of the Hessian can be constructed as rH˚k “ CJk S
˚J
k S˚kCk`∇2rpwkq, and then the bootstrap

samples of the Newton step and squared decrement can be computed accordingly.
The exact details are listed below in Algorithm 1.

Algorithm 1: Error estimation for newton sketch

Input: The current iterate wk P Rd, the sketch C̃k P Rtˆd, the sketched Newton step ∆̃k P Rdˆ1,
sketched squared decrement rδ2k, as well as the current gradient gk P Rd.

for b = 1 to B do in parallel

‚ Construct a matrix C̃˚k P Rtˆd whose rows are sampled uniformly from the rows of C̃k.

‚ Compute the following in succession:

H̃˚k :“ pC̃˚k q
JpC̃˚k q `∇2rpwkq

∆̃˚k :“ pH̃˚k q
´1gk

rδ˚2k :“ gJk ∆̃˚k

ε̃˚k,b :“ ρp∆̃˚k , ∆̃kq

ε̃˚k,b :“ %pδ̃˚2k , δ̃2kq

Return: pqα,k :“ quantilepε˚k,1, . . . , ε
˚
k,B ; 1´αq

pqα,k :“ quantilepε˚k,1, . . . , ε
˚
k,B ; 1´αq

2.2 Bootstrap Error Estimation for giant

We briefly recall the setting of the giant algorithm, where we have m workers, and the j-th worker holds
t “ n{m data points drawn from pai, biq

n
i“1, indexed by Ij .

To construct a giant step, each worker compute a locally approximated Newton step

r∆k,j “ rH´1
k,jgk,

where rHk,j is defined as in (5). Note that the construction of rHk,j only requires access to local samples. The

globally improved approximated Newton step (giant) r∆k is then computed by aggregating the local steps
r∆k,j , and the giant steps will be used to update the current iterate.

Since the data points on each worker are randomly drawn from tpai, biqu
n
i“1Wang et al. (2018), Algorithm 1

can naturally be extended to accommodate the distributed setting with uniform sampling. That is, if we
want to generate bootstrap step samples that fluctuate around giant step in a similar way as giant step
fluctuates around the exact Newton step ∆k, then we can follow the process similarly as in Algorithm 1,
to generate local bootstrap Newton steps on each worker, and aggregate them to obtain a global bootstrap
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Newton step sample. The process for generating the squared decrement samples are similar, and the exact
details are listed in Algorithm 2.

Algorithm 2: Error estimation for giant

Input: The current iterate wk P Rd, index sets I1, . . . , Im, giant step ∆̃k, approximate squared
decrement rδ2k, as well as the gradient gk.

for j = 1 to m do in parallel

for b = 1 to B do in parallel

‚ Draw t indices uniformly from Ij to form I˚j,b.

‚ ComputeH̃˚k,j,b :“ 1
t

ř

iPI˚
j,b
B21ϕpa

J
i wk, biqaia

J
i `∇2rpwkq..

‚ Compute ∆̃˚k,j,b :“ pH̃˚k,j,bq
´1gk.

‚ Compute δ̃˚2k,j,b :“ gJk ∆̃˚k,j,b.

‚ Aggregate local ˚-steps ∆̃˚k,b :“ 1
m

řm
j“1 ∆̃˚k,j,b.

‚ Aggregate local ˚-decrements δ̃˚2k,b :“ 1
m

řm
j“1 δ̃

˚2
k,j,b.

‚ Compute ˚-step error ε˚k,b :“ ρp∆̃˚k,b, ∆̃kq.

‚ Compute ˚-decrement error ε˚k,b :“ %pδ̃˚2k,b, δ̃
2
kq.

Return: pqα,k :“ quantilepε˚k,1, . . . , ε
˚
k,B ; 1´αq,

pqα,k :“ quantilepε˚k,1, . . . , ε
˚
k,B ; 1´αq.

3 Main Theoretical Results

In this section, we analyze the proposed method for minimizing functions of the form (1), with rpwq “ γ
2 }w}

2
2

for some regularization parameter γ ą 0. For the sake of brevity, our theoretical results will focus on the
particular relative error metric %px1, xq “ |x1 ´ x|{|x| for the Newton decrement.

3.1 Theoretical Setup

Consider a distributed setting where there are m workers that have t “ n{m data points obtained as uniform
samples from tpai, biqu

n
i“1 (which is the main setting considered by the authors of giant). Also, in order

to unify the presentation of our results, it is helpful to note that when m “ 1, this setting allows newton
sketch to be analyzed with uniform sampling matrices Sk and a sketch size of t. In addition, our proofs
can be extended in a straightforward way to accommodate other types of sketching matrices for newton
sketch, but we omit such details to keep our results more concise.

Notation and definitions. For the regularization function rpwq “ γ
2 }w}

2
2, recall that the Hessian Hk

can be decomposed as
Hk “ CJk Ck ` γId. (14)

We define the i-th ridge leverage score as

`γi,k :“
“

CkpC
J
k Ck ` γIdq

´1CJk
‰

ii
(15)

When γ “ 0, this coincides with the standard leverage score. Next, the effective dimension dγk is defined as
as
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dγk :“ `γ1,k ` ¨ ¨ ¨ ` `
γ
n,k “

řd
j“1

σ2
j pCkq

σ2
j pCkq`γ

, (16)

which can be much smaller than d when Ck has only a few dominant singular values (cf. Li et al., 2019). We
also use µγk “ µγkpCkq to refer to the ridge coherence, defined as

µγk :“ max
1ďiďn

´

n`γi,k
dγk

_ 1
¯

. (17)

In the case when γ is set to 0, the quantity µγk reduces to the ordinary matrix coherence (cf. Candès and
Recht, 2009), but it should be noted that γ will always assumed to be positive in our results. Intuitively µγk
measures how evenly information is spread among the rows of matrix Ck, and in many natural settings, this
quantity is Op1q or Oplogpnqq. (See also Proposition 1 later on.)

Below, the theoretical assumptions for our results are stated in terms of a random vector s P Rn that is
sampled from the uniform distribution on the set t

?
ne1, . . . ,

?
nenu Ă Rn.

Assumption 1. There is an absolute constant c1 ą 0 such that the following bound holds for any k ě 1
when gk ‰ 0,

var
´

1
δ2k
gJkH

´1
k CJk ss

JCkH
´1
k gk

¯

ě c1. (18)

Remark. In Section 3.2, we show that the above inequalities in Assumptions 1 holds “generically”, in
the sense that if the Q factor in the QR-factorization of Ck is drawn uniformly at random, then (18) holds
with high probability.

The following theorems provide theoretical guarantee on the performance of the proposed method for
estimating the error in squared Newton decrement.

Theorem 3.1. Suppose that Assumptions 1 holds, and let pqα,k denote the output of Algorithm 1 or 2.
Then, there exists absolute constant c ą 0, such that the bound

P
´

|δ̃2k´δ
2
k|

δ2k
ď pqα,k

¯

ě 1´ α´ c ω

holds for some positive number ω satisfying

ω ď
pµγkd

γ
kq

3 logpnqc
?
t

`

?
logpBq
?
B

.

Remarks. The main idea in our analysis is to approximate the distribution of error variable on each
worker by a Gaussian distribution. However, if we use the existing techniques for analyzing the error on a
single worker as inLopes et al. (2018); Fang et al. (2018), then in the distributed setting, where we need to
aggregating the results over m workers, the bias in each worker will also be accumulated. In other words, if
we follow the existing literature, the error term on the distributed system will be greater than on the single
worker setting. This does not match the experimental results. To address this issue, we further take into
account the bias on each worker, and show that the bootstrap method we proposed in Algorithm 1,2 can
correct the bias regardless of the number of workers, as is implied by our main theorem.

3.2 Validating the Assumptions for Generic Matrices

The collection of matrices in Rnˆd with orthornormal columns, denoted as Stiefpn, dq, is known to possess
a natural uniform probability distribution Meckes (2019). From a conceptual point of view, a random
matrix Q P Stiefpn, dq generated from this distribution may be regarded as “generic”. Accordingly, we can
investigate whether or not our theoretical assumption holds generically by checking if they are likely to hold
when the Q factor in the QR-decomposition of Ck is drawn from this distribution. In this way, the following
proposition provides a source of validation for Assumptions 1. In addition, the inequality (19) below shows
that the quantity µγkd

γ
k is of moderate size in this situation.
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Figure 1: Numerical results on dataset SUSY (n “ 5,000,000, d “ 18). The plots illustrate the performance
of Algorithms 1 and 2 in the task of estimating the quantiles of the three errors |δ̃2k ´ δ2k|, }∆̃k ´ ∆k}2,

and }∆̃k ´ ∆k}8. The blue curves are the empirical estimation of the 0.95-quantile of the errors, and are
regarded as the ideal benchmarks. The red curve is the averaged bootstrap estimation of the quantile, with
the yellow curves being three standard deviation away.

Proposition 1. Fix any integer k ě 1, and let R P Rdˆd be any fixed upper-triangular matrix satisfying

1
c ď σminpRq ď σmaxpRq ď c

for some absolute constant c ą 0. Next, let Q P Rnˆd be a random matrix drawn from the uniform
distribution on Stiefpn, dq, and suppose that the matrix Ck in (14) is equal to QR. Under these conditions,
there exists an absolute constant c0 ą 0, such that if n ě c0d

2, then the inequalities (18) in Assumptions 1
holds with probability at least 1´ 1

nc0pd_ log nq2. Furthermore, the inequality

µγkd
γ
k ď c0pd

γ
k _ log nq (19)

holds with probability at least 1´ c0{n.

Remarks. Since the columns of a random matrix Q drawn uniformly on Stiefpn, dq are not independent,
it is necessary in the proof of this result to make use of non-asymptotic tools that can allow for such
dependence. Specifically, the proof hinges on the fact that if a function ψ : Stiefpn, dq Ñ R is Lipschitz
with respect to the Frobenius norm, then the random variable ψpQq has strong concentration properties (cf.
Milman and Schechtman, 2009, p.29).

4 Experiments

We conducted a collection of experiments showing how the proposed error estimation methods can be applied
to newton sketch and giant in the context of `2-regularized logistic regression. Specifically, the objective
function we are considering has the form
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Figure 2: Numerical results on dataset SUSY (n “ 5,000,000, d “ 18). The plots illustrate the performance
of Algorithms 1 and 2 in the task of estimating the quantiles of the three relative errors |δ̃2k ´ δ2k|{|δ

2
k|,

}∆̃k ´ ∆k}{}∆k}2, and }∆̃k ´ ∆k}8{}∆k}8. The blue curves are the empirical estimation of the 0.95-
quantile of the errors, and are regarded as the ideal benchmarks. The red curve is the averaged bootstrap
estimation of the quantile, with the yellow curves being three standard deviation away.

fpwq “
1

n

n
ÿ

i“1

logp1` expp´paJi wqbiqq `
γ

2
}w}22,

where the observations satisfy pai, biq P Rd ˆ t˘1u for all i P t1, . . . , nu.

Data and parameter settings. For illustration we present the result for the regression dataset:
SUSY (n “ 5,000,000, d “ 18), which can be obtained from LIBSVM Chang and Lin (2011). We set the
regularization parameter to be γ “ 10´3, and the number of bootstrap samples to be B “ 12. We determine
the step length ηk in each iteration by Armijo line search, so that

fpwk ` ηk r∆kq ď fpwkq ` ηkβxr∆k, gky.

In our experiments, we set the control parameter β “ 0.1, and ηk is chosen from t20, 2´1, . . . , 2´10u.
We estimated the quantiles of both the relative error and the absolute error in three error metrics: the

error in squared Newton decrement, in `2-norm of the Newton step, and in `8-norm of the Newton step.
The results are shown in Figure 1, 2.

Below, we give the detailed description of the experiments for Algorithm 2 (giant) respectively. The
experiments for Algorithm 1 (newton sketch) is conducted in a similar way.

Experiments for giant. The experiments for giant algorithm are conducted in a similar way. We ran
the giant algorithm for 300 times, each time with 6 iterations using the update form as in (6). We randomly
sampled t data points for each of the m workers before each run, and the data points stayed unchanged on
each worker throughout the iterations. We chose m to be m “ 32 for all datasets in correspondence with the
sketch size in newton sketch. The error variables were computed at each iteration, giving 300 realizations
of each error variable, and the 0.95-quantiles of the 300 recorded errors at iteration k “ 1 . . . , 6 were then
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computed and were considered as the ideal empirical estimation of the true quantiles. As before we plot
them in blue. We also ran Algorithm 2 to obtain a bootstrap estimation of the quantiles. The bootstrap
estimations are plotted against the empirical estimation, see figure 1,2.

5 Future work

• We are working on deriving and improving the theoretical bound for the error in Newton step as well.
Also, similar techniques could be used to extend the results to other sketching method, such as length
square sampling, Gaussian Projection, subsampled randomized Hadamard transform, etc.

• We would like to adapt bootstrap methods for posteriori error estimation of randomized algorithms in
other regimes, for example, Schatten norm estimation, low rank matrix approximation, sparse graph
approximation, or zero-th order optimization. Try to propose algorithms that effectively estimate the
error while keeping the computation (and possibly communication) cost relatively low, and provide
non-asymptotic theoretical guarantees for the proposed methods.
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Proposed Exam Syllabus

Topic #1: Numerical Methods

Reference:Dahlquist and Bjorck (2008)

• Float point arithmetic, error propagation

• Matrix Computations

– LU factorization, QR decomposition, Singular value decomposition

– Krylov Subspace, Conjugate gradient method
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– Power iterations, Lanczos process

– Randomized Matrix Multiplication

– Sketching and randomized least square problem

• Numerical Optimization

– Gradient Descent, Secant Method, Newton’s Method

– Subgradient Method, Projected Gradient Descent, Alternating Direction Method of Multipli-
ers

Topic #2: Probability Theory

Reference: Durrett (2019)

• Measure theory

– Random variables

– Integration and Expectation

• Law of large numbers

– Borel-Cantelli lemmas

– Weak and strong law of large numbers

– Glivenko–Cantelli theorem

• Central limit theorem

– Generating functions and moments

– Central limit theorems

Topic #3: High Dimensional Statistics

Reference: Vershynin (2018)

• Tail and concentration bounds

– Chernoff’s inequality, Hoeffiding’s inequality, Bernstein’s inequality

– Sub-Gaussian, sub-exponential distributions

– Concentration of Lipschitz functions on the sphere, Gaussian concentration inequality

– Johnson-Linderstrauss lemma

• Random Process

– Covering numbers and packing numbers

– Gaussian and Rademacher complexity

– Slepian’s inequality, Sudakov-Fernique’s inequality

– Sudakov’s minoration inequality

– Chaining, Dudley’s inequality

Topic #4: Computational Statistics

Reference: Gentle (2009)

• Expectation Maximization Algorithm

• Sampling techniques

– Inverse transform, Rejection sampling

– Markov Chain Monte Carlo
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